Skip to main content

MERCURY ORE

Mercury, also known as quicksilver or hydrargyrum, is a chemical element with the symbol Hg (Latinized Greek: hydrargyrum, from "hydr-" meaning watery or runny and "argyros" meaning silver) and atomic number 80. A heavy, silvery d-block metal, mercury is one of five metallic chemical elements that are liquid at or near room temperature and pressure,[1][2] the others being caesium, francium, gallium, and rubidium. Mercury is the only metal that is liquid at standard conditions for temperature and pressure; the only other element that is liquid under these conditions is bromine.[3] With a melting point of −38.83 °C and boiling point of 356.73 °C, mercury has one of the broadest ranges of its liquid state of any metal.
Detailed description
Mercury occurs in deposits throughout the world mostly as cinnabar (mercuric sulfide), which is the source of the red pigment vermilion, and is mostly obtained by reduction from cinnabar. Cinnabar is highly toxic by ingestion or inhalation of the dust. Mercury poisoning can also result from exposure to soluble forms of mercury (such as mercuric chloride or methylmercury), inhalation of mercury vapor, or eating fish contaminated with mercury.
Mercury is used in thermometers, barometers, manometers, sphygmomanometers, float valves, some electrical switches, and other scientific apparatus, though concerns about the element's toxicity have led to mercury thermometers and sphygmomanometers being largely phased out in clinical environments in favor of alcohol-filled, digital, or thermistor-based instruments. It remains in use in a number of other ways in scientific and scientific research applications, and in amalgam material for dental restoration. It is used in lighting: electricity passed through mercury vapor in a phosphor tube produces short-wave ultraviolet light which then causes the phosphor to fluoresce, making visible light.

Properties
Physical properties
Mercury is a heavy, silvery-white metal. As compared to other metals, it is a poor conductor of heat, but a fair conductor of electricity.[4]
Chemical properties
Mercury has an exceptionally low melting temperature for a d-block metal. A complete explanation of this fact requires a deep excursion into quantum physics, but it can be summarized as follows: mercury has a unique electronic configuration where electrons fill up all the available 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 5d and 6s subshells. As such configuration strongly resists removal of an electron, mercury behaves similarly to noble gas elements, which form weak bonds and thus easily melting solids. The stability of the 6s shell is due to the presence of a filled 4f shell. An f shell poorly screens the nuclear charge that increases the attractive Coulomb interaction of the 6s shell and the nucleus (see lanthanide contraction). The absence of a filled inner f shell is the reason for the much higher melting temperature of cadmium. Metals such as gold have atoms with one less 6s electron than mercury. Those electrons are more easily removed and are shared between the gold atoms forming relatively strong metallic bonds.[2][5] At the melting point (−38.86 °C) its density is[6] 14.1 g/cm3.
Reactivity and compounds
Mercury dissolves to form amalgams with gold, zinc and many other metals. Because iron is an exception, iron flasks have been traditionally used to trade mercury. Other metals that do not form amalgams with mercury include tantalum, tungsten and platinum. When heated, mercury also reacts with oxygen in air to form mercury oxide, which then can be decomposed by further heating to higher temperatures.[7]
Since it is below hydrogen in the reactivity series of metals, mercury does not react with most acids, such as dilute sulfuric acid, though oxidizing acids such as concentrated sulfuric acid and nitric acid or aqua regia dissolve it to give sulfate, nitrate, and chloride salts. Like silver, mercury reacts with atmospheric hydrogen sulfide. Mercury even reacts with solid sulfur flakes, which are used in mercury spill kits to absorb mercury vapors (spill kits also use activated carbon and powdered zinc).[7]
Mercury and aluminium
Mercury readily combines with aluminium to form a mercury-aluminium amalgam when the two pure metals come into contact. However, when the amalgam is exposed to air, the aluminium oxidizes, leaving mercury behind. The oxide flakes away, exposing more mercury amalgam, which repeats the process. This process continues until the supply of amalgam is exhausted. Because this process releases mercury, a small amount of mercury can "eat through" a large amount of aluminium over time, by progressively forming amalgam and relinquishing the aluminium as oxide.[14]

Aluminium in air is ordinarily protected by a molecule-thin layer of its own oxide, which is not porous to oxygen. Mercury coming into contact with this oxide does no harm. However, if any elemental aluminium is exposed (even by a recent scratch), the mercury may combine with it, starting the process described above, and potentially damaging a large part of the aluminium before it finally ends. For this reason, restrictions are placed on the use and handling of mercury in proximity with aluminium. In particular, mercury is not allowed aboard an aircraft under most circumstances because of the risk of it forming an amalgam with exposed aluminium parts in the aircraft.

PRICE
$4,090/FLASK

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com



Comments

Popular posts from this blog

SPODUMENE [LiAl(SiO3)2]

Spodumene   is a   pyroxene   mineral   consisting of   lithium   aluminium   inosilicate ,   Li Al ( Si O 3 ) 2 , and is a source of lithium. It occurs as colorless to yellowish, purplish, or lilac kunzite (see below), yellowish-green or emerald-green   hiddenite , prismatic crystals, often of great size.   Detailed d Single crystals of 14.3 m (47 ft) in size are reported from the   Black Hills   of   South Dakota ,   United States . [5] [6] The normal low-temperature form α-spodumene is in the   monoclinic   system whereas the high-temperature β-spodumene crystallizes in the   tetragonal   system. The normal α-spodumene converts to β-spodumene at temperatures above 900 °C. [4]   Crystals are typically heavily striated parallel to the principal axis. Crystal faces are often etched and pitted with triangular markings. Discovery and occurrence Spodumene was first des...

COLUMBITE[(Fe, Mn)Nb2O6]

Columbite , also called  niobite ,  niobite-tantalite  and  columbate  [( Fe ,  Mn ) Nb 2 O 6 ], is a black  mineral  group that is an ore of  niobium . It has a submetallic  luster  and a high density and is a niobate of  iron  and  manganese .  Detailed description This mineral group was first found in  Haddam, Connecticut , in the United States. It forms a series with the  tantalum -dominant analogue  ferrotantalite  and one with the manganese-dominant analogue  manganocolumbite . The iron-rich member of the columbite group is  ferrocolumbite . Some tin and tungsten may be present in the mineral.  Yttrocolumbite  is the yttrium-rich columbite with the formula (Y,U,Fe)(Nb,Ta)O 4 . It is a radioactive mineral found in  Mozambique . Columbite has the same composition and crystal symmetry ( orthorhombic ) as  tantalite . In fact, the two are often grouped t...

ARSENOPYRITE MINERAL

Listing description What is Arsenopyrite? Arsenopyrite is an iron arsenic sulfide. It is the most common arsenic mineral and the primary ore of arsenic metal. Detailed description Arsenopyrite is most often found as a hydrothermal vein mineral and sometimes as a mineral of contact metamorphism. It is sometimes referred to in old texts as "mispickel".   Physical Properties of Arsenopyrite Chemical Classification sulfide Color silver white to steel gray Streak dark grayish black Luster metallic Diaphaneity opaque Cleavage poor Mohs Hardness 5.5 to 6 Specific Gravity 5.9 to 6.2 Diagnostic Properties smells like garlic when crushed, crystal form Chemical Composition iron arsenic sulfide, FeAsS Crystal System monoclinic Uses poison...