Skip to main content

ZIRCONIUM ORE

Zirconium ( /zərˈkoʊniəm/ zər-KOH-ni-əm) is a chemical element with the symbol Zr and atomic number 40. Its atomic mass is 91.224. It is a lustrous, grey-white, strong transition metal that resembles titanium. Zirconium is used as an alloying agent for its strong resistance to corrosion. It is never found as a native metal; it is obtained mainly from the mineral zircon, which can be purified with chlorine. Zirconium was first isolated in an impure form in 1824 by Jöns Jakob Berzelius.
Detailed description
Zirconium has no known biological role. Zirconium forms both inorganic and organometallic compounds such as zirconium dioxide and zirconocene dichloride, respectively. There are five naturally occurring isotopes, three of which are stable. Short-term exposure to zirconium powder causes minor irritation, and inhalation of zirconium compounds can cause skin and lung granulomas.

Characteristics
Zirconium is a lustrous, grayish-white, soft, ductile, and malleable metal which is solid at room temperature, though it becomes hard and brittle at lower purities.[4][5] In powder form, zirconium is highly flammable, but the solid form is far less prone to ignition. Zirconium is highly resistant to corrosion by alkalis, acids, salt water, and other agents.[6] However, it will dissolve in hydrochloric and sulfuric acid, especially when fluorine is present.[7] Alloys with zinc become magnetic below 35 K.[6]
Zirconium's melting point is at 1855°C, and its boiling point 4409°C.[6] Zirconium has an electronegativity of 1.33 on the Pauling scale. Of the elements within d-block, zirconium has the fourth lowest electronegativity after yttrium, lutetium, and hafnium.[8]
Applications
Because of zirconium's excellent resistance to corrosion, it is often used as an alloying agent in materials that are exposed to corrosive agents, such as surgical appliances, explosive primers, vacuum tube getters and filaments. Zirconium dioxide (ZrO2) is used in laboratory crucibles, metallurgical furnaces, as a refractory material,[6] and it can be sintered into a ceramic knife. Zircon (ZrSiO4) is cut into gemstones for use in jewelry. Zirconium carbonate (3ZrO2·CO2·H2O) was used in lotions to treat poison ivy, but this was discontinued because it occasionally caused bad skin reactions.[4]
Ninety percent of all zirconium produced is used in nuclear reactors (in the form of zircaloys) because of its low neutron-capture cross-section and resistance to corrosion.[5][6] Zirconium alloys are used in space vehicle parts for their resistance to heat, an important quality given the extreme heat associated with atmospheric reentry.[9] Zirconium is also a component in some abrasives, such as grinding wheels and sandpaper.[10] Zirconium is used in weapons such as the BLU-97/B Combined Effects Bomb for incendiary effect.
High temperature parts such as combustors, blades and vanes in modern jet engines and stationary gas turbines are to an ever increasing extent being protected by thin ceramic layers which reduce the metal temperatures below and keep them from undergoing (too) extensive deformation which could possibly result in early failure. They are absolutely necessary for the most modern gas turbines which are driven to ever higher firing temperatures to produce more electricity at less CO2. These ceramic layers are usually composed by a mixture of zirconium and yttrium oxide.[11]
Refining

Upon being collected from coastal waters, the solid mineral zircon is purified by spiral concentrators to remove excess sand and gravel and by magnetic separators to remove ilmenite and rutile. The byproducts can then be dumped back into the water safely, as they are all natural components of beach sand. The refined zircon is then purified into pure zirconium by chlorine or other agents, then sintered until sufficiently ductile for metalworking.[5] Zirconium and hafnium are both contained in zircon and they are quite difficult to separate due to their extremely similar chemical properties. Usually, an ion exchange process is used to separate them.

PRICE
$45/KG

For more information:

mobile: +2348039721941

contact person: emeaba uche

e-mail: emeabau@yahoo.com





Comments

Popular posts from this blog

SPODUMENE [LiAl(SiO3)2]

Spodumene   is a   pyroxene   mineral   consisting of   lithium   aluminium   inosilicate ,   Li Al ( Si O 3 ) 2 , and is a source of lithium. It occurs as colorless to yellowish, purplish, or lilac kunzite (see below), yellowish-green or emerald-green   hiddenite , prismatic crystals, often of great size.   Detailed d Single crystals of 14.3 m (47 ft) in size are reported from the   Black Hills   of   South Dakota ,   United States . [5] [6] The normal low-temperature form α-spodumene is in the   monoclinic   system whereas the high-temperature β-spodumene crystallizes in the   tetragonal   system. The normal α-spodumene converts to β-spodumene at temperatures above 900 °C. [4]   Crystals are typically heavily striated parallel to the principal axis. Crystal faces are often etched and pitted with triangular markings. Discovery and occurrence Spodumene was first des...

COLUMBITE[(Fe, Mn)Nb2O6]

Columbite , also called  niobite ,  niobite-tantalite  and  columbate  [( Fe ,  Mn ) Nb 2 O 6 ], is a black  mineral  group that is an ore of  niobium . It has a submetallic  luster  and a high density and is a niobate of  iron  and  manganese .  Detailed description This mineral group was first found in  Haddam, Connecticut , in the United States. It forms a series with the  tantalum -dominant analogue  ferrotantalite  and one with the manganese-dominant analogue  manganocolumbite . The iron-rich member of the columbite group is  ferrocolumbite . Some tin and tungsten may be present in the mineral.  Yttrocolumbite  is the yttrium-rich columbite with the formula (Y,U,Fe)(Nb,Ta)O 4 . It is a radioactive mineral found in  Mozambique . Columbite has the same composition and crystal symmetry ( orthorhombic ) as  tantalite . In fact, the two are often grouped t...

ARSENOPYRITE MINERAL

Listing description What is Arsenopyrite? Arsenopyrite is an iron arsenic sulfide. It is the most common arsenic mineral and the primary ore of arsenic metal. Detailed description Arsenopyrite is most often found as a hydrothermal vein mineral and sometimes as a mineral of contact metamorphism. It is sometimes referred to in old texts as "mispickel".   Physical Properties of Arsenopyrite Chemical Classification sulfide Color silver white to steel gray Streak dark grayish black Luster metallic Diaphaneity opaque Cleavage poor Mohs Hardness 5.5 to 6 Specific Gravity 5.9 to 6.2 Diagnostic Properties smells like garlic when crushed, crystal form Chemical Composition iron arsenic sulfide, FeAsS Crystal System monoclinic Uses poison...